The cardiovascular system's Renin-Angiotensin-Aldosterone System (RAAS).
Abstract
The renin-angiotensin-aldosterone system (RAAS) has a noteworthy part in triggering, and inflammation is maintained by its physiological agents. A crucial mechanism for the initiation and headway of CVD, including Hypertension and atherosclerosis, is inflammation. In addition to its primary function in controlling blood pressure and its contribution to Hypertension, RAAS has pro-inflammatory and profibrotic cellular and molecular effects. Cardiovascular and renal disorders can be treated more effectively by hindering RAAS. Proof recommends that RAAS inhibition enhances vascular remodelling and gets better CVD sequels. Lower levels of oxidative stress and endothelial dysfunction, vascular inflammation, and favourable effects on endothelial progenitor cell regeneration are likely the causes of RAAS inhibition's sound vascular effects.
Downloads
References
Ferrario CM, Strawn WB. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol. 2006; 98(1):121-8.
DOI: https://doi.org/10.1016/j.amjcard.2006.01.059
Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension: The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934; 59(3):347-79.
DOI: https://doi.org/10.1084/jem.59.3.347
Fyhrquist F, Saijonmaa O. Renin‐angiotensin system revisited. J Inter Med. 2008; 264(3):224-36.
DOI: https://doi.org/10.1111/j.1365-2796.2008.01981.x
Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Investig. 2002; 109(11):1417-27.
DOI: https://doi.org/10.1172/JCI14276.
Huang Y, Noble NA, Zhang J, Xu C, Border WA. Renin-stimulated TGF-β1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int. 2007; 72(1):45-52.
DOI: https://doi.org/10.1038/sj.ki.5002243
Staessen JA, Li Y, Richart T. Oral renin inhibitors. Lancet. 2006; 368(9545):1449-56.
DOI: https://doi.org/10.1016/S0140-6736(06)69442-7
Gebru Y, Diao TY, Pan H, Mukwaya E, Zhang Y. Potential of RAS inhibition to improve metabolic bone disorders. BioMed Res Int. 2013.
DOI: https://doi.org/10.1155/2013/932691
Cannavo A, Bencivenga L, Liccardo D, Elia A, Marzano F, Gambino G, et al. Aldosterone and mineralocorticoid receptor system in cardiovascular physiology and pathophysiology. Oxid Med Cell Longev. 2018.
DOI: https://doi.org/10.1155/2018/1204598
Gustafsson F, Azizi M, Bauersachs J, Jaisser F, Rossignol P. Targeting the aldosterone pathway in cardiovascular disease. Fundam Clin Pharmacol. 2012; 26(1):135-45.
DOI: https://doi.org/10.1111/j.1472-8206.2011.01004.x
Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000; 87(5):e1-9.
DOI: https://doi.org/10.1161/01.RES.87.5.e1
Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H, et al. Prevention of angiotensin II–mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension. 2011; 57(2):314-22.
DOI: https://doi.org/10.1161/HYPERTENSIONAHA.110.164244
Ferrario CM. Angiotensin-converting enzyme 2 and angiotensin-(1-7) an evolving story in cardiovascular regulation. Hypertension. 2006; 47(3):515-21.
DOI: https://doi.org/10.1161/01.HYP.0000196268.08909.fb
Richard V, Hurel-Merle S, Scalbert E, Ferry G, Lallemand F, Bessou JP, et al. Functional evidence for a role of vascular chymase in the production of angiotensin II in isolated human arteries. Circulation. 2001; 104(7):750-2.
DOI: https://doi.org/10.1161/hc3201.094971
Tracy RP. Inflammation in cardiovascular disease: cart, horse, or both?. Circulation. 1998; 97(20):2000-2.
DOI: https://doi.org/10.1161/01.CIR.97.20.2000
Mason RP. Optimal therapeutic strategy for treating patients with hypertension and atherosclerosis: focus on olmesartan medoxomil. Vasc Health Risk Manag. 2011; 24:405-16.
DOI: https://doi.org/10.2147/VHRM.S20737
Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010; 20(2).
DOI: https://doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10
Gao X, Belmadani S, Picchi A, Xu X, Potter BJ, Tewari-Singh N. Tumor necrosis factor-α induces endothelial dysfunction in Leprdb mice. Circulation. 2007; 115(2):245-54.
DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.650671
Pelisek J, Rudelius M, Zepper P, Poppert H, Reeps C, Schuster T, et al. Multiple biological predictors for vulnerable carotid lesions. Cerebrovasc. Dis. 2009; 28(6):601-10.
DOI: https://doi.org/10.1159/000247605
Russo G, Leopold JA, Loscalzo J. Vasoactive substances: nitric oxide and endothelial dysfunction in atherosclerosis. Vasc Pharmacol. 2002; 38(5):259-69.
DOI: https://doi.org/10.1016/S1537-1891(02)00250-1
Zimmerman MA, Selzman CH, Reznikov LL, Miller SA, Raeburn CD, Emmick J, et al. Lack of TNF-α attenuates intimal hyperplasia after mouse carotid artery injury. Am J Physiol Regul Integr. 2002; 283(2):R505-12.
DOI: https://doi.org/10.1152/ajpregu.00033.2002
Fujita M, Shannon JM, Irvin CG, Fagan KA, Cool C, Augustin A, et al. Overexpression of tumor necrosis factor-α produces an increase in lung volumes and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol . 2001; 280(1):L39-49.
DOI: https://doi.org/10.1152/ajplung.2001.280.1.L39
Lambert CM, Roy M, Meloche J, Robitaille GA, Agharazii M, Richard DE, et al. Tumor necrosis factor inhibitors as novel therapeutic tools for vascular remodeling diseases. Am J Physiol Lung Cell Mol Physiol . 2010; 299(4):H995-1001.
DOI: https://doi.org/10.1152/ajpheart.00562.2010
Krasinski K, Spyridopoulos I, Kearney M, Losordo DW. In vivo blockade of tumor necrosis factor-α accelerates functional endothelial recovery after balloon angioplasty. Circulation. 2001; 104(15):1754-6.
DOI: https://doi.org/10.1161/hc4001.098046
Han Y, Runge MS, Brasier AR. Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-κB transcription factors. Circ Res. 1999; 84(6):695-703.
DOI: https://doi.org/10.1161/01.RES.84.6.695
Von Känel R, Mills PJ, Mausbach BT, Dimsdale JE, Patterson TL, Ziegler MG, et al. Effect of Alzheimer caregiving on circulating levels of C-reactive protein and other biomarkers relevant to cardiovascular disease risk: a longitudinal study. Gerontol. 2012; 58(4):354-65.
DOI: https://doi.org/10.1159/000334219
Hurlimann J, Thorbecke GJ, Hochwald GM. The liver as the site of C-reactive protein formation. J Exp Med. 1966; 123(2):365-78. DOI: https://doi.org/10.1084/jem.123.2.365
Calabró P, Willerson JT. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation. 2003; 108(16):1930-2.
DOI: https://doi.org/10.1161/01.CIR.0000096055.62724.C5
Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation. 2000; 102(18):2165-8.
DOI: https://doi.org/10.1161/01.CIR.102.18.2165
Verma S, Kuliszewski MA, Li SH, Szmitko PE, Zucco L, Wang CH. C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation. 2004; 109(17):2058-67.
DOI: https://doi.org/10.1161/01.CIR.102.18.2165
Wang CH, Li SH, Weisel RD, Fedak PW, Dumont AS, Szmitko P, et al. C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle. Circulation. 2003; 107(13):1783-90.
DOI: https://doi.org/10.1161/01.CIR.0000061916.95736.E5
Hage FG, Oparil S, Xing D, Chen YF, McCrory MA, Szalai AJ. C-reactive protein-mediated vascular injury requires complement. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010; 30(6):1189-95.
DOI: https://doi.org/10.1161/ATVBAHA.110.205377
Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005; 111(25):3481-8.
DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.537878
Danesh J, Muir J, Wong YK, Ward M, Gallimore JR, Pepys MB. Risk factors for coronary heart disease and acute-phase proteins. A population-based study. Eur Heart J. 1999; 20(13):954-9. DOI: https://doi.org/10.1053/euhj.1998.1309
Tang WB, Zhou YQ, Zhao T, Shan JL, Sun P, Yang TT, et al. Effect of interleukin-6 (IL-6) on the vascular smooth muscle contraction in abdominal aorta of rats with streptozotocin-induced diabetes. Chin J Physiol. 2011; 54(5):318-23.
DOI: https://doi.org/10.4077/CJP.2011.AMM069
Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB. Interleukin-6 overexpression induces pulmonary hypertension. Circ Res. 2009; 104(2):236-44.
DOI: https://doi.org/10.1161/CIRCRESAHA.108.182014
Iversen PO, Nicolaysen A, Kvernebo K, Benestad HB, Nicolaysen G. Human cytokines modulate arterial vascular tone via endothelial receptors. Pflügers Archiv. 1999; 439:93-100.
DOI: https://doi.org/10.1007/s004249900149
Empana JP, Jouven X, Canouï-Poitrine F, Luc G, Tafflet M, Haas B, et al . C-reactive protein, interleukin 6, fibrinogen and risk of sudden death in European middle-aged men: the PRIME study. Arterioscler Thromb Vasc Biol. 2010; 30(10):2047-52.
DOI: https://doi.org/10.1161/ATVBAHA.110.208785
Niida T, Isoda K, Kitagaki M, Ishigami N, Adachi T, Matsubara O, et al. IκBNS regulates interleukin-6 production and inhibits neointimal formation after vascular injury in mice. Card Res. 2012; 93(2):371-9.
DOI: https://doi.org/10.1093/cvr/cvr323
Rohde LE, Lee RT, Rivero J, Jamacochian M, Arroyo LH, Briggs W, et al. Circulating cell adhesion molecules are correlated with ultrasound-based assessment of carotid atherosclerosis. Arteriosclerosis, thrombosis, and vascular bioArterioscler Thromb Vasc Biollogy. 1998; 18(11):1765-70.
DOI: https://doi.org/10.1161/01.ATV.18.11.1765
Neves MF, Amiri F, Virdis A, Diep QN, Schiffrin EL. Role of aldosterone in angiotensin II-induced cardiac and aortic inflammation, fibrosis, and hypertrophy. Can J Physiol Pharmacol . 2005; 83(11):999-1006.
DOI: https://doi.org/10.1139/y05-068
Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-κB activation induced by intracellular oxidative stress. Arteriosclerosis, thrombosis, and vascular bioArterioscler Thromb Vasc Biollogy. 2000; 20(3):645-51.
Copyright (c) 2023 Journal of Shifa Tameer-e-Millat University
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Journal of Shifa Tameer-e-Millat University (JSTMU) is the owner of all copyright to any work published in the journal. Any material printed in JSTMU may not be reproduced without the permission of the editors or publisher. The Journal accepts only original material for publication with the understanding that except for abstracts, no part of the data has been published or will be submitted for publication elsewhere before appearing and/or decision in this journal. The Editorial Board makes every effort to ensure the accuracy and authenticity of material printed in the journal. However, conclusions and statements expressed are views of the authors and do not necessarily reflect the opinions of the Editorial Board or JSTMU.
Content of this journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.