Nanoparticle's efficacy in the suppression of heavy metals that affect breast cancer progression.
Abstract
The study aimed to assess the literature to explore the efficacy of different nanoparticles that play a role in suppressing various heavy metals that cause breast cancer. Breast cancer is a prevalent reason of death among females around the world. Heavy metals, including arsenic, beryllium, cadmium, nickel, hexavalent chromium, and much more, play a role in the expansion of various types of cancer, mainly breast cancer. Nanomedicine has unbelievable potential for developing cancer treatment and diagnosis by inventive biocompatible nanocomposites for treatment. Gold nanoparticle's role as an effective treatment is quickly increasing. Silver exhibited significant interactivity among various nanoparticles due to its distinctive characteristics, such as conductivity, stability, catalytic properties, and antibacterial attributes. These can also be used for antimicrobial activities for many microorganisms such as bacteria, fungi, protozoans, and, recently, viruses. The data from various studies was retrieved. The studies on heavy metals and nanoparticles and their role were retrieved and added to this study. This will help people understand the influential role of nanomedicine in suppressing breast cancer. It is concluded that extensive efforts have been devoted to addressing breast cancer by utilizing various nanoparticles, including gold and silver nanoparticles. Silver nanoparticles, gold nanoparticles, and Myr-AuNPs (Gold nanoparticles) demonstrate promise as potent anticancer agents for breast cancer. However, further research is needed to combat the current state of breast cancer effectively.
Downloads
References
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011; 61(2):69-90.
DOI: https://doi.org/10.3322/caac.20107
Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br. J. Cancer. 2021; 124(1):13-26.
DOI: https://doi.org/10.1038/s41416-020-01161-4
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394-424.
DOI: https://doi.org/10.3322/caac.21492
Liu Y, Gordon AS, Eleff M, Barron JJ, Chi WC. The Association Between Mammography Screening Frequency and Breast Cancer Treatment and Outcomes: A Retrospective Cohort Study. J Breast Imaging. 2023; 5(1):21-9.
DOI: https://doi.org/10.1093/jbi/wbac071
Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P. Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer Registry Programme, India. Indian J Med Res. 2023; (11):598-607
DOI: https://doi.org/10.4103/ijmr.ijmr_1821_22
Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast cancer statistics, 2022. CA Cancer J Clin. 2022; 72(6):524-41.
DOI: https://doi.org/10.3322/caac.21754
Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol Rep. 2017; 69(3):393-402.
DOI: https://doi.org/10.1016/j.pharep.2016.12.011
Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017; 24(6):233-43.
DOI: https://doi.org/10.1038/cgt.2017.16
Kunjiappan S, Panneerselvam T, Prasad P, Sukumaran S, Somasundaram B, Sankaranarayanan M, et al. Design, graph theoretical analysis and in silico modeling of Dunaliella bardawil biomass encapsulated keratin nanoparticles: a scaffold for effective glucose utilization. Biomed Mater. 2018; 13(4):045012.
DOI: https://doi.org/10.1088/1748-605X/aabcea
Anjum S, Ali H, Naseer F, Abduh MS, Qadir H, Kakar S, et al. Antioxidant Activity of Carica papaya & Persea americana Fruits against Cadmium Induced Neurotoxicity, Nephrotoxicity, and Hepatotoxicity in Rats with a Computational Approach. J Trace Elem Med Biol. 2023; 2:127324.
DOI: https://doi.org/10.1016/j.jtemb.2023.127324
Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S. Formulation of surface-functionalized hyaluronic acid-coated thiolated chitosan nano-formulation for the delivery of vincristine in prostate cancer: A multifunctional targeted drug delivery approach. J Drug Deliv Sci Technol. 2022; 74:103545.
DOI: https://doi.org/10.1016/j.jddst.2022.103545
Satayavivad J, Thiantanawat A, Pianjing P, Visitnonthachai D, Chaiyot K, Watcharasit P. Estrogenic activity of sesamol from sesame seed and its interaction with the effect of metalloestrogen cadmium on T47D human breast cancer cells. Toxicol Letter. 2010; (196):S311-2.
DOI: https://doi.org/10.1016/j.toxlet.2010.03.984
Georgescu B, Georgescu C, Dărăban S, Bouaru A, Pașcalău S. Heavy metals acting as endocrine disrupters. J. Anim. Sci. Biotechnol. 2011; 44(2):89.
Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Cadmium—a metallohormone?. Toxicol. Appl. Pharmacol. 2009; 238(3):266-71.
DOI: https://doi.org/10.1016/j.taap.2009.03.025
Martin MB, Reiter R, Pham T, Avellanet YR, Camara J, Lahm M, Pentecost E, Pratap K, Gilmore BA, Divekar S, Dagata RS. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinol. 2003; 144(6):2425-36.
DOI: https://doi.org/10.1210/en.2002-221054
Foster PJ, Wong TY, Machin D, Johnson GJ, Seah SK. Risk factors for nuclear, cortical and posterior subcapsular cataracts in the Chinese population of Singapore:Tanjong Pagar Survey. Br J Ophthalmol. 2003; 87(9):1112-20.
DOI: https://doi.org/10.1136/bjo.87.9.1112
Aquino NB, Sevigny MB, Sabangan J, Louie MC. The role of cadmium and nickel in estrogen receptor signaling and breast cancer: metalloestrogens or not? Environ. Sci. Health. 2012; 30(3):189-224.
DOI: https://doi.org/10.1080/10590501.2012.705159
Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Metals and breast cancer. J Mammary Gland Biol Neoplasia. 2013; 18(1):63-73.
DOI: https://doi.org/10.1007/s10911-013-9273-9
Yu X, Filardo EJ, Shaikh ZA. The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells. Toxicol Appl Pharmacol. 2010; 245(1):83-90.
DOI: https://doi.org/10.1016/j.taap.2010.02.005
McElroy JA, Shafer MM, Trentham-Dietz A, Hampton JM, Newcomb PA. Cadmium exposure and breast cancer risk. J Natl Cancer Inst. 2006; 98(12):869-73.
DOI: https://doi.org/10.1093/jnci/djj233
Strumylaite L, Bogusevicius A, Abdrachmanovas O, Baranauskiene D, Kregzdyte R, Pranys D, et al. Cadmium concentration in biological media of breast cancer patients. Breast Cancer Res Treat. 2011; 125:511-7.
DOI: https://doi.org/10.1007/s10549-010-1007-8
Höfer N, Diel P, Wittsiepe J, Wilhelm M, Degen GH. Dose-and route-dependent hormonal activity of the metalloestrogen cadmium in the rat uterus. Toxicol Lett. 2009; 191(2-3):123-31.
DOI: https://doi.org/10.1016/j.toxlet.2009.08.014
Joseph P. Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol. 2009; 238(3):272-9.
DOI: https://doi.org/10.1016/j.taap.2009.01.011
Kousar K, Naseer F, Abduh MS, Kakar S, Gul R, Anjum S, et al. Green synthesis of hyaluronic acid coated, thiolated chitosan nanoparticles for CD44 targeted delivery and sustained release of Cisplatin in cervical carcinoma. Front Pharmacol. 2023; 13:1073004.
DOI: https://doi.org/10.3389/fphar.2022.1073004
Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005; 436(7050):568-72.
DOI: https://doi.org/10.1038/nature03794
Pandey P, Dureja H. Recent patents on polymeric nanoparticles for cancer therapy. Recent Patents. 2018; 12(2):155-69.
DOI: https://doi.org/10.2174/1872210512666180327120648
Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomed. 2009; 1:1-7.
DOI: https://doi.org/10.2147/IJN.S4241
Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clinical cancer research. 2005; 11(11):4136-43.
DOI: https://doi.org/10.1158/1078-0432.CCR-04-2291
Misra R, Sahoo SK. Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. Eur J Pharm Sci. 2010; 39(1-3):152-63.
DOI: https://doi.org/10.1016/j.ejps.2009.11.010
Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, et al. Direct evidence that polysorbate-80-coated poly (butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res. 2003; 20:409-16.
DOI: https://doi.org/10.1023/A:1022604120952
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009; 30(11):592-9.
DOI: https://doi.org/10.1016/j.tips.2009.08.004
Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006; 307(1):93-102.
DOI: https://doi.org/10.1016/j.ijpharm.2005.10.010
Rao KS, Ghorpade A, Labhasetwar V. Targeting anti-HIV drugs to the CNS. Expert Opin Drug Deliv. 2009; 6(8):771-84.
DOI: https://doi.org/10.1517/17425240903081705
Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem. 2006; 384:620-30.
DOI: https://doi.org/10.1007/s00216-005-0247-7
Philip D, Unni C, Aromal SA, Vidhu VK. Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol. 2011; 78(2):899-904.
DOI: https://doi.org/10.1016/j.saa.2010.12.060
Gibson JD, Khanal BP, Zubarev ER. Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc. 2007; 129(37):11653-61.
DOI: https://doi.org/10.1021/ja075181k
Paciotti GF, Kingston DG, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor‐targeted drug delivery vectors. Drug Dev Res. 2006; 67(1):47-54.
DOI: https://doi.org/10.1002/ddr.20066
Ajnai G, Chiu A, Kan T, Cheng CC, Tsai TH, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. J Clin Exp Med. 2014; 6(6):172-8.
DOI: https://doi.org/10.1016/j.jecm.2014.10.015
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012; 41(7):2740-79.
DOI: https://doi.org/10.1039/C1CS15237H
Schmid G. Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 1992; 92(8):1709-27.
DOI: https://doi.org/10.1021/cr00016a002
Templeton AC, Wuelfing WP, Murray RW. Monolayer-protected cluster molecules. Acc. Chem. Res. 2000; 33(1):27-36.
DOI: https://doi.org/10.1021/ar9602664
Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G. Cellular uptake and toxicity of Au55 clusters. Small. 2005; 1(8‐9):841-4.
DOI: https://doi.org/10.1002/smll.200500104
Bhattacharya R, Mukherjee P. Biological properties of "naked" metal nanoparticles. Adv Drug Deliv Rev. 2008; 60(11):1289-306.
DOI: https://doi.org/10.1016/j.addr.2008.03.013
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005; 1(3):325-7.
DOI: https://doi.org/10.1002/smll.200400093
Dörr W. Radiobiology of tissue reactions. Ann ICRP. 2015; 44(1_suppl):58-68.
DOI: https://doi.org/10.1177/0146645314560
Park C, Youn H, Kim H, Noh T, Kook YH, Oh ET, et al. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anticancer drug. J Mater Chem. 2009; 19(16):2310-5.
DOI: https://doi.org/10.1039/B816209C
Han G, You CC, Kim BJ, Turingan RS, Forbes NS, et al. Light‐regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew Chem. 2006; 118(19):3237-41.
DOI: https://doi.org/10.1002/ange.200600214
Hong R, Han G, Fernández JM, Kim BJ, Forbes NS, Rotello VM. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc. 2006; 128(4):1078-9.
DOI: https://doi.org/10.1021/ja056726i
Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int Nano Lett. 2017; 7:91-122.
DOI: https://doi.org/10.1007/s40089-017-0208-0
F Jiao P, Y Zhou H, X Chen L, Yan B. Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy. Curr Med Chem. 2011; 18(14):2086-102.
DOI: https://doi.org/10.2174/092986711795656199
Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomed: Nanotechnol Biol Med. 2014; 10(1):19-34.
DOI: https://doi.org/10.1016/j.nano.2013.07.001
Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomed: Nanotechnol Biol Med. 2014; 10(1):19-34.
DOI: https://doi.org/10.1016/j.nano.2013.07.001
Kimbrell GA. Nanotechnology and nanomaterials in consumer products: Regulatory challenges and necessary amendments. Food Drug Adm. Public Meet. Nanotechnol. 2011.
DOI: https://doi.org/10.1016/j.yrtph.2021.104885
Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella Jr MF, Rejeski D, et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015; 6(1):1769-80.
DOI: https://doi.org/10.3762/bjnano.6.181
Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, et al. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B. 2013; 106:86-92.
DOI: https://doi.org/10.1016/j.colsurfb.2013.01.027
Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today. 2012; 17(1-2):71-80.
DOI: https://doi.org/10.1016/j.drudis.2011.09.009
Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O'Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006; 7(8):657-67.
Copyright (c) 2023 Journal of Shifa Tameer-e-Millat University
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Journal of Shifa Tameer-e-Millat University (JSTMU) is the owner of all copyright to any work published in the journal. Any material printed in JSTMU may not be reproduced without the permission of the editors or publisher. The Journal accepts only original material for publication with the understanding that except for abstracts, no part of the data has been published or will be submitted for publication elsewhere before appearing and/or decision in this journal. The Editorial Board makes every effort to ensure the accuracy and authenticity of material printed in the journal. However, conclusions and statements expressed are views of the authors and do not necessarily reflect the opinions of the Editorial Board or JSTMU.
Content of this journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.