Nanoparticle's efficacy in the suppression of heavy metals that affect breast cancer progression.

  • Yasir Nawaz PhD scholar, Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
  • Saba Munir PhD scholar, Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
  • Fouzia Tanvir Assistant Professor, Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
  • Asma Umar Senior Demonstrator, Department of Biochemistry, Allama Iqbal Medical College, Lahore, Pakistan
  • Muhammad Ali Student, Department of Medical Laboratory Technician, Abasyn University, Islamabad, Pakistan
Keywords: Breast Cancer, Heavy metals, Nanoparticles, Nanomedicine, Gold, Silver

Abstract

The study aimed to assess the literature to explore the efficacy of different nanoparticles that play a role in suppressing various heavy metals that cause breast cancer. Breast cancer is a prevalent reason of death among females around the world. Heavy metals, including arsenic, beryllium, cadmium, nickel, hexavalent chromium, and much more, play a role in the expansion of various types of cancer, mainly breast cancer. Nanomedicine has unbelievable potential for developing cancer treatment and diagnosis by inventive biocompatible nanocomposites for treatment. Gold nanoparticle's role as an effective treatment is quickly increasing. Silver exhibited significant interactivity among various nanoparticles due to its distinctive characteristics, such as conductivity, stability, catalytic properties, and antibacterial attributes. These can also be used for antimicrobial activities for many microorganisms such as bacteria, fungi, protozoans, and, recently, viruses. The data from various studies was retrieved. The studies on heavy metals and nanoparticles and their role were retrieved and added to this study. This will help people understand the influential role of nanomedicine in suppressing breast cancer. It is concluded that extensive efforts have been devoted to addressing breast cancer by utilizing various nanoparticles, including gold and silver nanoparticles. Silver nanoparticles, gold nanoparticles, and Myr-AuNPs (Gold nanoparticles) demonstrate promise as potent anticancer agents for breast cancer. However, further research is needed to combat the current state of breast cancer effectively.

Downloads

Download data is not yet available.

References

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011; 61(2):69-90.

DOI: https://doi.org/10.3322/caac.20107

Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br. J. Cancer. 2021; 124(1):13-26.

DOI: https://doi.org/10.1038/s41416-020-01161-4

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394-424.

DOI: https://doi.org/10.3322/caac.21492

Liu Y, Gordon AS, Eleff M, Barron JJ, Chi WC. The Association Between Mammography Screening Frequency and Breast Cancer Treatment and Outcomes: A Retrospective Cohort Study. J Breast Imaging. 2023; 5(1):21-9.

DOI: https://doi.org/10.1093/jbi/wbac071

Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P. Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer Registry Programme, India. Indian J Med Res. 2023; (11):598-607

DOI: https://doi.org/10.4103/ijmr.ijmr_1821_22

Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast cancer statistics, 2022. CA Cancer J Clin. 2022; 72(6):524-41.

DOI: https://doi.org/10.3322/caac.21754

Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol Rep. 2017; 69(3):393-402.

DOI: https://doi.org/10.1016/j.pharep.2016.12.011

Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017; 24(6):233-43.

DOI: https://doi.org/10.1038/cgt.2017.16

Kunjiappan S, Panneerselvam T, Prasad P, Sukumaran S, Somasundaram B, Sankaranarayanan M, et al. Design, graph theoretical analysis and in silico modeling of Dunaliella bardawil biomass encapsulated keratin nanoparticles: a scaffold for effective glucose utilization. Biomed Mater. 2018; 13(4):045012.

DOI: https://doi.org/10.1088/1748-605X/aabcea

Anjum S, Ali H, Naseer F, Abduh MS, Qadir H, Kakar S, et al. Antioxidant Activity of Carica papaya & Persea americana Fruits against Cadmium Induced Neurotoxicity, Nephrotoxicity, and Hepatotoxicity in Rats with a Computational Approach. J Trace Elem Med Biol. 2023; 2:127324.

DOI: https://doi.org/10.1016/j.jtemb.2023.127324

Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S. Formulation of surface-functionalized hyaluronic acid-coated thiolated chitosan nano-formulation for the delivery of vincristine in prostate cancer: A multifunctional targeted drug delivery approach. J Drug Deliv Sci Technol. 2022; 74:103545.

DOI: https://doi.org/10.1016/j.jddst.2022.103545

Satayavivad J, Thiantanawat A, Pianjing P, Visitnonthachai D, Chaiyot K, Watcharasit P. Estrogenic activity of sesamol from sesame seed and its interaction with the effect of metalloestrogen cadmium on T47D human breast cancer cells. Toxicol Letter. 2010; (196):S311-2.

DOI: https://doi.org/10.1016/j.toxlet.2010.03.984

Georgescu B, Georgescu C, Dărăban S, Bouaru A, Pașcalău S. Heavy metals acting as endocrine disrupters. J. Anim. Sci. Biotechnol. 2011; 44(2):89.

Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Cadmium—a metallohormone?. Toxicol. Appl. Pharmacol. 2009; 238(3):266-71.

DOI: https://doi.org/10.1016/j.taap.2009.03.025

Martin MB, Reiter R, Pham T, Avellanet YR, Camara J, Lahm M, Pentecost E, Pratap K, Gilmore BA, Divekar S, Dagata RS. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinol. 2003; 144(6):2425-36.

DOI: https://doi.org/10.1210/en.2002-221054

Foster PJ, Wong TY, Machin D, Johnson GJ, Seah SK. Risk factors for nuclear, cortical and posterior subcapsular cataracts in the Chinese population of Singapore:Tanjong Pagar Survey. Br J Ophthalmol. 2003; 87(9):1112-20.

DOI: https://doi.org/10.1136/bjo.87.9.1112

Aquino NB, Sevigny MB, Sabangan J, Louie MC. The role of cadmium and nickel in estrogen receptor signaling and breast cancer: metalloestrogens or not? Environ. Sci. Health. 2012; 30(3):189-224.

DOI: https://doi.org/10.1080/10590501.2012.705159

Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Metals and breast cancer. J Mammary Gland Biol Neoplasia. 2013; 18(1):63-73.

DOI: https://doi.org/10.1007/s10911-013-9273-9

Yu X, Filardo EJ, Shaikh ZA. The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells. Toxicol Appl Pharmacol. 2010; 245(1):83-90.

DOI: https://doi.org/10.1016/j.taap.2010.02.005

McElroy JA, Shafer MM, Trentham-Dietz A, Hampton JM, Newcomb PA. Cadmium exposure and breast cancer risk. J Natl Cancer Inst. 2006; 98(12):869-73.

DOI: https://doi.org/10.1093/jnci/djj233

Strumylaite L, Bogusevicius A, Abdrachmanovas O, Baranauskiene D, Kregzdyte R, Pranys D, et al. Cadmium concentration in biological media of breast cancer patients. Breast Cancer Res Treat. 2011; 125:511-7.

DOI: https://doi.org/10.1007/s10549-010-1007-8

Höfer N, Diel P, Wittsiepe J, Wilhelm M, Degen GH. Dose-and route-dependent hormonal activity of the metalloestrogen cadmium in the rat uterus. Toxicol Lett. 2009; 191(2-3):123-31.

DOI: https://doi.org/10.1016/j.toxlet.2009.08.014

Joseph P. Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol. 2009; 238(3):272-9.

DOI: https://doi.org/10.1016/j.taap.2009.01.011

Kousar K, Naseer F, Abduh MS, Kakar S, Gul R, Anjum S, et al. Green synthesis of hyaluronic acid coated, thiolated chitosan nanoparticles for CD44 targeted delivery and sustained release of Cisplatin in cervical carcinoma. Front Pharmacol. 2023; 13:1073004.

DOI: https://doi.org/10.3389/fphar.2022.1073004

Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005; 436(7050):568-72.

DOI: https://doi.org/10.1038/nature03794

Pandey P, Dureja H. Recent patents on polymeric nanoparticles for cancer therapy. Recent Patents. 2018; 12(2):155-69.

DOI: https://doi.org/10.2174/1872210512666180327120648

Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomed. 2009; 1:1-7.

DOI: https://doi.org/10.2147/IJN.S4241

Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clinical cancer research. 2005; 11(11):4136-43.

DOI: https://doi.org/10.1158/1078-0432.CCR-04-2291

Misra R, Sahoo SK. Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. Eur J Pharm Sci. 2010; 39(1-3):152-63.

DOI: https://doi.org/10.1016/j.ejps.2009.11.010

Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, et al. Direct evidence that polysorbate-80-coated poly (butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res. 2003; 20:409-16.

DOI: https://doi.org/10.1023/A:1022604120952

Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009; 30(11):592-9.

DOI: https://doi.org/10.1016/j.tips.2009.08.004

Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006; 307(1):93-102.

DOI: https://doi.org/10.1016/j.ijpharm.2005.10.010

Rao KS, Ghorpade A, Labhasetwar V. Targeting anti-HIV drugs to the CNS. Expert Opin Drug Deliv. 2009; 6(8):771-84.

DOI: https://doi.org/10.1517/17425240903081705

Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem. 2006; 384:620-30.

DOI: https://doi.org/10.1007/s00216-005-0247-7

Philip D, Unni C, Aromal SA, Vidhu VK. Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol. 2011; 78(2):899-904.

DOI: https://doi.org/10.1016/j.saa.2010.12.060

Gibson JD, Khanal BP, Zubarev ER. Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc. 2007; 129(37):11653-61.

DOI: https://doi.org/10.1021/ja075181k

Paciotti GF, Kingston DG, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor‐targeted drug delivery vectors. Drug Dev Res. 2006; 67(1):47-54.

DOI: https://doi.org/10.1002/ddr.20066

Ajnai G, Chiu A, Kan T, Cheng CC, Tsai TH, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. J Clin Exp Med. 2014; 6(6):172-8.

DOI: https://doi.org/10.1016/j.jecm.2014.10.015

Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012; 41(7):2740-79.

DOI: https://doi.org/10.1039/C1CS15237H

Schmid G. Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 1992; 92(8):1709-27.

DOI: https://doi.org/10.1021/cr00016a002

Templeton AC, Wuelfing WP, Murray RW. Monolayer-protected cluster molecules. Acc. Chem. Res. 2000; 33(1):27-36.

DOI: https://doi.org/10.1021/ar9602664

Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G. Cellular uptake and toxicity of Au55 clusters. Small. 2005; 1(8‐9):841-4.

DOI: https://doi.org/10.1002/smll.200500104

Bhattacharya R, Mukherjee P. Biological properties of "naked" metal nanoparticles. Adv Drug Deliv Rev. 2008; 60(11):1289-306.

DOI: https://doi.org/10.1016/j.addr.2008.03.013

Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005; 1(3):325-7.

DOI: https://doi.org/10.1002/smll.200400093

Dörr W. Radiobiology of tissue reactions. Ann ICRP. 2015; 44(1_suppl):58-68.

DOI: https://doi.org/10.1177/0146645314560

Park C, Youn H, Kim H, Noh T, Kook YH, Oh ET, et al. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anticancer drug. J Mater Chem. 2009; 19(16):2310-5.

DOI: https://doi.org/10.1039/B816209C

Han G, You CC, Kim BJ, Turingan RS, Forbes NS, et al. Light‐regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew Chem. 2006; 118(19):3237-41.

DOI: https://doi.org/10.1002/ange.200600214

Hong R, Han G, Fernández JM, Kim BJ, Forbes NS, Rotello VM. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc. 2006; 128(4):1078-9.

DOI: https://doi.org/10.1021/ja056726i

Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int Nano Lett. 2017; 7:91-122.

DOI: https://doi.org/10.1007/s40089-017-0208-0

F Jiao P, Y Zhou H, X Chen L, Yan B. Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy. Curr Med Chem. 2011; 18(14):2086-102.

DOI: https://doi.org/10.2174/092986711795656199

Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomed: Nanotechnol Biol Med. 2014; 10(1):19-34.

DOI: https://doi.org/10.1016/j.nano.2013.07.001

Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomed: Nanotechnol Biol Med. 2014; 10(1):19-34.

DOI: https://doi.org/10.1016/j.nano.2013.07.001

Kimbrell GA. Nanotechnology and nanomaterials in consumer products: Regulatory challenges and necessary amendments. Food Drug Adm. Public Meet. Nanotechnol. 2011.

DOI: https://doi.org/10.1016/j.yrtph.2021.104885

Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella Jr MF, Rejeski D, et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015; 6(1):1769-80.

DOI: https://doi.org/10.3762/bjnano.6.181

Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, et al. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B. 2013; 106:86-92.

DOI: https://doi.org/10.1016/j.colsurfb.2013.01.027

Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today. 2012; 17(1-2):71-80.

DOI: https://doi.org/10.1016/j.drudis.2011.09.009

Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O'Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006; 7(8):657-67.

DOI: https://doi.org/10.1016/S1470-2045(06)70793-8

Published
2024-01-08
How to Cite
1.
Nawaz Y, Munir S, Tanvir F, Umar A, Ali M. Nanoparticle’s efficacy in the suppression of heavy metals that affect breast cancer progression. JSTMU [Internet]. 8Jan.2024 [cited 22Dec.2024];6(2):106-12. Available from: https://j.stmu.edu.pk/ojs/index.php/jstmu/article/view/255
Section
Review Article (without Meta-analysis)