Tuberculosis and scavenger receptors: Exploring their relationship.
Abstract
Tuberculosis (TB) remains a significant global health concern, particularly in low- and middle-income countries. Several risk factors are associated with TB infection and its progression from infection to disease onset, including host factors, microbial factors, environmental factors, and socio-economic status. Host genetic factors play a significant role in determining susceptibility to acquiring infection, progression to active disease, and the severity of the disease. Innate immunity is essential in the initial defense, advancement, and long-term control of mycobacterial infection. Among various cell surface and intracellular receptors mediating mycobacteria uptake, scavenger receptors play a crucial role in innate immunity. Scavenger receptors are classified into 12 classes, with class B comprising SR-B1 (SCARB-1), SR-B2 (LIMP2), and SR-B3 (CD36). SR-B1 and CD36 are involved in the uptake and phagocytosis of Mycobacterium tuberculosis (Mtb). Scavenger receptors promote cytokine production and modulate cytokine production during antimycobacterial responses. The SR-B1 and CD36 genes contain various single nucleotide polymorphisms in their intronic and exonic regions. These polymorphisms may influence the expression of the genes, leading to changes in Mtb uptake and antimycobacterial response. In this current review, we have explored the importance of scavenger receptors in TB pathogenesis. Additionally, we have summarized SNPs in SR-B1 and CD36 genes and their effect on protein expression.
Downloads
References
World Health Organization. Global Tuberculosis Report 2022. 2022. Avaliable online: https://www. who. int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022. 2022:1-68.
Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, et al. Incipient and subclinical
tuberculosis: a clinical review of early stages and progression of infection. Clin Microbiol Rev. 2018; 31(4):10-128.
DOI: https://doi.org/10.1128/cmr.00021-18
Cadena AM, Fortune SM, Flynn JL. Heterogeneity in tuberculosis. Nature Rev Immunol. 2017; 17(11):691-702.
DOI: https://doi.org/10.1038/nri.2017.69
Scordo JM, Olmo-Fontanez AM, Kelley HV, Sidiki S, Arcos J, et al. The human lung mucosa drives differential Mycobacterium tuberculosis infection outcome in the alveolar epithelium. Mucosal Immunol. 2019; 12(3):795-804.
DOI: https://doi.org/10.1038/s41385-019-0156-2
Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Clin Exp Med. 2018; 215(4):1135-52.
DOI: https://doi.org/10.1084/jem.20172020
Cohen SB, Gern BH, Delahaye JL, Plumlee CR, Gerner MY, Urdahl KB. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. J Immunol. 2020; 204(1_Supplement):231-32.
DOI: https://doi.org/10.4049/jimmunol.204.Supp.231.32
Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol. 2022; 20(12):750-66.
DOI: https://doi.org/10.1038/ s41579-022-00763-4
Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med. 2017; 5(4):291-360.
DOI:https://doi.org/10.1016/S2213-2600(17)30079-6
Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of ahost–pathogen collusion. Front Immunol. 2013; 3:411.
DOI: https://doi.org/10.3389/fimmu.2012.00411
Boom WH, Schaible UE, Achkar JM. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J Clin Invest. 2021; 131(3).
DOI: https://doi.org/10.1172/JCI136222.
Russell DG. Who puts the tubercle in tuberculosis?. Nat Rev Microbiol. 2007; 5(1):39-47.
DOI: https://doi.org/10.1038/nrmicro1538
Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. 2002; 20(1):581-620.
DOI: https://doi.org/10.1146/annurev.immunol.20.081501.125851
Shen Y, Ye X, Bi Q. Association of apolipoprotein E with the progression of hepatitis B virus-related liver disease. Int J Clin Exp Pathol. 2015; 8(11):14749.
Rutledge BJ, Rayburn H, Rosenberg R, North RJ, Gladue RP, Corless CL, et al. High-level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J. Immunol. 1995; 155(10):4838-43.
DOI: https://doi.org/10.4049/jimmunol.155.10.4838
Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, et al. Ipr1 gene mediates innate immunity to tuberculosis. Nature. 2005; 434(7034):767-72.
DOI: https://doi.org/10.1038/nature03419
Leu JS, Chen ML, Chang SY, Yu SL, Lin CW, Wang H, et al. SP110b controls host immunity and susceptibility to tuberculosis. Am J Respir Crit Care Med. 2017; 195(3):369-82.
DOI: https://doi.org/10.1164/rccm.201601-0103OC
Dubos RJ, Dubos J. The white plague: tuberculosis, man, and society. Rutgers University Press; 1987.
Comstock GW. Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis. 1978; 117(4):621-4.
DOI: https://doi.org/10.1164/arrd.1978.117.4.621
Adane G, Lemma M, Geremew D, Sisay T, Tessema MK, Damtie D, et al. Genetic Polymorphism of Tumor Necrosis Factor-Alpha, Interferon-Gamma and Interleukin-10 and Association With Risk of Mycobacterium Tuberculosis Infection. J Evid Based Integr Med. 2021; 26:2515690X211006344.
DOI: https://doi.org/10.1177/2515690X21100634
Li HM, Wang LJ, Huang Q, Pan HF, Zhang TP. Exploring the association between Th17 pathway gene polymorphisms and pulmonary tuberculosis. Front. immunol. 2022; 13:994247.
DOI: https://doi.org/10.3389/fimmu.2022.994247
Cao Y, Wang X, Cao Z, Cheng X. Association of Vitamin D receptor gene TaqI polymorphisms with tuberculosis susceptibility: a meta-analysis. Int J Clin Exp Med. 2015; 8(6):10187.
Huang L, Liu C, Liao G, Yang X, Tang X, Chen J. Vitamin D receptor gene FokI polymorphism contributes to increasing the risk of tuberculosis: an update meta-analysis. Medicine. 2015; 94(51).
DOI: https://doi.org/10.1097/MD.0000000000002256
Van Tong H, Velavan TP, Thye T, Meyer CG. Human genetic factors in tuberculosis: an update. Trop Med Health. 2017; 22(9):1063-71.
DOI: https://doi.org/10.1111/tmi.12923
Zhou Y, Zhang M. Associations between genetic polymorphisms of TLRs and susceptibility to tuberculosis: A meta-analysis. Innate Immunity. 2020; 26(2):75-83.
DOI: https://doi.org/10.1177/17534259198623
Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci. 1979; 76(1):333-7.
DOI: https://doi.org/10.1073/pnas.76.1.333
Alquraini A, El Khoury J. Scavenger receptors. Current Biology. 2020; 30(14):R790-5.
DOI: https://doi.org/10.1016/j.cub.2020.05.051.
PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DM, Drickamer K, Febbraio M, et al. A consensus definitive classification of scavenger receptors and their roles in health and disease. J Immunol. 2017; 198(10):3775-89.
DOI: https://doi.org/10.4049/jimmunol.1700373
Taban Q, Mumtaz PT, Masoodi KZ, Haq E, Ahmad SM. Scavenger receptors in host defense: from functional aspects to mode of action. J Cell Commun Signal. 2022; 20:1-7.
DOI: https://doi.org/10.1186/s12964-021-00812-0
PrabhuDas M, Bowdish D, Drickamer K, Febbraio M, Herz J, Kobzik L, et al. Standardizing scavenger receptor nomenclature. J Immunol. 2014; 192(5):1997-2006.
DOI: https://doi.org/10.4049/jimmunol.1490003
Abdul Zani I, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, Ponnambalam S. Scavenger receptor structure and function in health and disease. Cells. 2015; 4(2):178-201.
DOI: https://doi.org/10.3390/cells4020178
Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996; 271(5248):518-20.
DOI: https://doi.org/10.1126/science.271.5248.5
Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signaling. 2009; 2(72):re3-.
DOI: https://doi.org/10.1126/scisignal.272re3
Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell metabol. 2006; 4(3):211-21.
DOI: https://doi.org/10.1016/j.cmet.2006.06.007
Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Immunol. 1997; 8(5):275-80.
DOI: https://doi.org/10.1097/00041433-199710000-00006
Areschoug T, Gordon S. Scavenger receptors: role in innate immunity and microbial pathogenesis. Cell Microbiol. 2009; 11(8):1160-9.
DOI: https://doi.org/10.1111/j.1462-5822.2009.01326.x
Rodrigues CD, Hannus M, Prudêncio M, Martin C, Gonçalves LA, Portugal S, et al. Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection. Cell Host Microbe. 2008; 4(3):271-82.
DOI: https://doi.org/10.1016/j.chom.2008.07.012
Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 2002; 21(19):5017-25.
DOI: https://doi.org/10.1093/emboj/cdf529
Adachi H, Tsujimoto M. Endothelial scavenger receptors. Prog Lipid Res. 2006; 45(5):379-404.
DOI: https://doi.org/10.1016/j.plipres.2006.03.002
Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis infections. Microbiol Spectr. 2019; 7(4):10-
DOI: https://doi.org/10.1128/microbiolspec.gpp3-0022-2018
Dodd CE, Pyle CJ, Glowinski R, Rajaram MV, Schlesinger LS. CD36-mediated uptake of surfactant lipids by human macrophages promotes intracellular growth of Mycobacterium tuberculosis. J Immunol. 2016; 197(12):4727-35.
DOI: https://doi.org/10.4049/jimmunol.1600856
Killick KE, Ní Cheallaigh C, O'Farrelly C, Hokamp K, MacHugh DE, Harris J. Receptor‐mediated recognition of mycobacterial pathogens. Cell Microbiol. 2013; 15(9):1484-95.
DOI: https://doi.org/10.1111/cmi.12161
Schäfer G, Guler R, Murray G, Brombacher F, Brown GD. The role of scavenger receptor B1 in infection with Mycobacterium tuberculosis in a murine model. PloS One. 2009; 4(12):e8448.
DOI: https://doi.org/10.1371/journal.pone.0008448
Khan A, Mann L, Papanna R, Lyu MA, Singh CR, Olson S, et al . Mesenchymal stem cells internalize Mycobacterium tuberculosis through scavenger receptors and restrict bacterial growth through autophagy. Sci Rep. 2017; 7(1):15010.
DOI: https://doi.org/10.1038/s41598-017-15290-z
Khan HS, Nair VR, Ruhl CR, Alvarez-Arguedas S, Galvan Rendiz JL, Franco LH, et al. Identification of scavenger receptor B1 as the airway microfold cell receptor for Mycobacterium tuberculosis. Elife. 2020; 9:e52551.
DOI: https://doi.org/10.7554/eLife.52551
Bonilla DL, Bhattacharya A, Sha Y, Xu Y, Xiang Q, Kan A, et al. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity. 2013; 39(3):537-47.
DOI: https://doi.org/10.1016/j.immuni.2013.08.026.
Il’in DA, Shkurupy VA. In vitro analysis of the expression of CD11, CD29, CD36, and DC-STAMP molecules during the formation of multinuclear macrophages in BCG-infected mice. Bull Exp Biol Med. 2019; 167(5):653-5.
DOI: https://doi.org/10.1007/s10517-019-04591-0
Liu Q, Ou Q, Chen H, Gao Y, Liu Y, Xu Y, et al. Differential expression and predictive value of monocyte scavenger receptor CD163 in populations with different tuberculosis infection statuses. BMC Infec Dis. 2019; 19:1-2.
DOI: https://doi.org/10.1186/s12879-019-4525-y
Bowdish DM, Sakamoto K, Kim MJ, Kroos M, Mukhopadhyay S, Leifer CA, et al. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog. 2009; 5(6):e1000474.
DOI: https://doi.org/10.1371/journal.ppat.1000474
Józefowski S, Sobota A, Hamasur B, Pawłowski A, Kwiatkowska K. Mycobacterium tuberculosis lipoarabinomannan enhances LPS-induced TNF-α production and inhibits NO secretion by engaging scavenger receptors. Microb Pathog. 2011; 50(6):350-9.
DOI: https://doi.org/10.1016/j.micpath.2011.03.001
Ozeki Y, Tsutsui H, Kawada N, Suzuki H, Kataoka M, Kodama T, et al. Macrophage scavenger receptor down-regulates mycobacterial cord factor-induced proinflammatory cytokine production by alveolar and hepatic macrophages. Microb Pathog. 2006; 40(4):171-6.
DOI: https://doi.org/10.1016/j.micpath.2005.12.006
Sever-Chroneos Z, Tvinnereim A, Hunter RL, Chroneos ZC. Prolonged survival of scavenger receptor class A-deficient mice from pulmonary Mycobacterium tuberculosis infection. Tuberculosis. 2011; 91:S69-74.
DOI: https://doi.org/10.1016/j.tube.2011.10.014
Hawkes M, Li X, Crockett M, Diassiti A, Finney C, Min-Oo G, et al. CD36 deficiency attenuates experimental mycobacterial infection. BMC Infect Dis. 2010;10(1):1-7.
DOI: https://doi.org/10.1186/1471-2334-10-299
Constantineau J, Greason E, West M, Filbin M, Kieft JS, Carletti MZ, et al. A synonymous variant in scavenger receptor, class B, type I gene is associated with lower SR-BI protein expression and function. Atheroscl. 2010; 210(1):177-82.
DOI: https://doi.org/10.1016/j.atherosclerosis.2009.11.029
West M, Greason E, Kolmakova A, Jahangiri A, Asztalos B, Pollin TI, et al. Scavenger receptor class B type I protein as an independent predictor of high-density lipoprotein cholesterol levels in subjects with hyperalphalipoproteinemia. J Clin Endocrinol Metab.. 2009; 94(4):1451-7.
DOI: https://doi.org/10.1210/jc.2008-1223
Westhaus S, Deest M, Nguyen AT, Stanke F, Heckl D, Costa R, et al. Scavenger receptor class B member 1 (SCARB1) variants modulate hepatitis C virus replication cycle and viral load. J Hepatol. 2017; 67(2):237-45.
DOI: https://doi.org/10.1016/j.jhep.2017.03.020
Chiba-Falek O, Nichols M, Suchindran S, Guyton J, Ginsburg GS, Barrett-Connor E, et al. Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI) expression in liver and association with lipid levels in a population-based study. BMC Med Genet. 2010; 11(1):1-2.
DOI: https://doi.org/10.1186/1471-2350-11-9
Love-Gregory L, Sherva R, Schappe T, Qi JS, McCrea J, Klein S, et al. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum Mol Genet. 2011; 20(1):193-201.
Copyright (c) 2023 Journal of Shifa Tameer-e-Millat University
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Journal of Shifa Tameer-e-Millat University (JSTMU) is the owner of all copyright to any work published in the journal. Any material printed in JSTMU may not be reproduced without the permission of the editors or publisher. The Journal accepts only original material for publication with the understanding that except for abstracts, no part of the data has been published or will be submitted for publication elsewhere before appearing and/or decision in this journal. The Editorial Board makes every effort to ensure the accuracy and authenticity of material printed in the journal. However, conclusions and statements expressed are views of the authors and do not necessarily reflect the opinions of the Editorial Board or JSTMU.
Content of this journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.