The relationship between some immunological and biochemical parameters with COVID-19: A comprehensive review
Abstract
Coronaviruses, a family of RNA viruses, are known to infect various species, including humans, through specific receptors in organs such as the lungs and heart. The article highlights the significant elevation of biomarkers like C-reactive protein (CRP), ferritin, D-dimer, and lactate dehydrogenase (LDH) in COVID-19 patients, which correlate with disease severity and inflammatory responses and provides a comprehensive analysis of the immunological and biochemical factors associated with COVID-19, focusing on the role of coronaviruses. The authors discuss the zoonotic origins of SARS-CoV-2, tracing its transmission from bats to humans via intermediate hosts like pangolins. They emphasize the airborne nature of SARS-CoV-2 transmission among humans, primarily through respiratory droplets and potential fecal-oral routes. The structural characteristics of coronaviruses are examined, detailing their large size and spike proteins that facilitate entry into host cells by binding to the ACE2 receptor. The study emphasizes identifying reliable COVID-19 biomarkers, particularly C-reactive protein (CRP), for early diagnosis and severity assessment. It calls for continued research to improve diagnostic and therapeutic strategies in managing this viral infection.
Downloads
References
Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trend Microbiol. 2016; 24(6):490-502.
DOI: https://doi.org/10.1016/j.tim.2016.03.003.
Lagunas‐Rangel FA. Neutrophil‐to‐lymphocyte ratio and lymphocyte‐to‐C‐reactive protein ratio in patients with severe coronavirus disease 2019 (COVID‐19): a meta‐analysis. J Med Virol. 2020; 92(10):1733.
DOI: https://doi.org/10.1002/jmv.25819.
Dong N, Yang X, Ye L, Chen K, Chan EW, Yang M, et al. Genomic and protein structure modeling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus that caused a pneumonia outbreak in Wuhan, China. BioRxiv. 2020.
DOI: https://doi.org/10.1101/2020.01.20.913368
Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020; 63:457-60.
DOI: https://doi.org/10.1007/s11427-020-1637-5.
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565-74.
DOI: https://doi.org/10.1016/S0140-6736(20)30251-8.
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020; 382(13):1199-207.
DOI: https://doi.org/10.1056/NEJMoa2001316.
Lorusso A, Calistri P, Petrini A, Savini G, Decaro N. Novel coronavirus (SARS-CoV-2) epidemic: a veterinary perspective. Vet Ital. 2020; 56(1):5-10.
DOI: https://doi.org/10.12834/VetIt.2173.11599.1.
World Health Organization. Coronavirus disease (COVID-19): weekly epidemiological update. 2020.
DOI: https://doi.org/10.2196/53551.
Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al. Isolation and characterization of 2019-nCoV-like coronavirus from Malayan pangolins. Bio Rxiv. 2020; 20:2020-02.
DOI: https://doi.org/10.1101/2020.02.17.951335
Kakodkar P, Kaka N, Baig MN. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus. 2020; 12(4).
DOI: https://doi.org/10.7759/cureus.7560.
Li X, Liu C, Mao Z, Xiao M, Wang L, Qi S, et al. Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: a systematic review and meta-analysis. Crit Care. 2020; 24(1):1-0.
DOI: https://doi.org/10.1186/s13054-020-03374-8.
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17(3):181-92.
DOI: https://doi.org/10.1038/s41579-018-0118-9.
Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and coronaviruses. Viruses. 2019; 11(1):41.
DOI: https://doi.org/10.3390/v11010041.
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020; 109:102433.
DOI: https://doi.org/10.1016/j.jaut.2020.102433.
Perlman S. Another decade, another coronavirus. N Engl J Med. 2020; 382(8):760-2.
DOI: https://doi.org/10.1056/NEJMe2001126.
Lam TT, Shum MH, Zhu HC, Tong YG, Ni XB, Liao YS, et al. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. Bio Rxiv. 2020; 583(7815):282-285.
DOI: https://doi.org/10.1038/s41586-020-2169-0.
Ji W, Wang W, Zhao X, Zai J, Li X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus 2019-nCoV may boost cross-species transmission from snake to human. J Med Virol. 2020; 92(4):433-440
DOI: https://doi.org/10.1002/jmv.25682.
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565-74.
DOI: https://doi.org/10.1016/S0140-6736(20)30251-8.
Gu J, Han B, Wang J. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020; 158(6):1518-9.
DOI: https://doi.org/10.1053/j.gastro.2020.02.054.
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020; 382(10):929-36.
DOI: https://doi.org/10.1056/NEJMoa2001191.
Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. 2020; 94:44-8.
DOI: https://doi.org/10.1016/j.ijid.2020.03.004.
Ghinai I, McPherson TD, Hunter JC, Kirking HL, Christiansen D, Joshi K, et al. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet. 2020; 395(10230):1137-44.
DOI: https://doi.org/10.1016/S0140-6736(20)30607-3.
Jaimes JA, Millet JK, Stout AE, André NM, Whittaker GR. A tale of two viruses: the distinct spike glycoproteins of feline coronaviruses. Viruses. 2020; 12(1):83.
DOI: https://doi.org/10.3390/v12010083.
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020; 94(7):10-128.
DOI: https://doi.org/10.1128/JVI.00127-20.
Parasher A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med J. 2021; 97(1147):312-20.
DOI: https://doi.org/10.1136/postgradmedj-2020-138577
Wang Y, Grunewald M, Perlman S. Coronaviruses: an updated overview of their replication and pathogenesis. Coronaviruses: Methods Mol Biol. 2020; 1-29.
DOI: https://doi.org/10.1007/978-1-0716-0900-2_1.
Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogen. 2020; 9(3):231.
DOI: https://doi.org/10.3390/pathogens9030231.
Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021; 6(1):233.
DOI: https://doi.org/10.1038/s41392-021-00653-w.
Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 2020; 221(11):1762-9.
DOI: https://doi.org/10.1093/infdis/jiaa150.
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020; 54:62-75.
DOI: https://doi.org/10.1016/j.cytogfr.2020.06.001.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229):1054-62.
DIOI: https://doi.org/10.1016/S0140-6736(20)30566-3.
Baraboutis IG, Gargalianos P, Aggelonidou E, Adraktas A. Initial real-life experience from a designated COVID-19 centre in Athens, Greece: a proposed therapeutic algorithm. SN Compr Clin Med. 2020; 2(6):689-93.
DOI: https://doi.org/10.1007/s42399-020-00324-x.
Sheikhzadeh E, Eissa S, Ismail A, Zourob M. Diagnostic techniques for COVID-19 and new developments. Talanta. 2020; 220:121392.
DOI: https://doi.org/10.1016/j.talanta.2020.121392.
Lee CY, Lin RT, Renia L, Ng LF. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front Immunol. 2020; 11:879.
DOI: https://doi.org/10.3389/fimmu.2020.00879.
Younes N, Al-Sadeq DW, Al-Jighefee H, Younes S, Al-Jamal O, Daas HI, et al. Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses. 2020; 12(6):582.
DOI: https://doi.org/10.3390/v12060582.
Padoan A, Cosma C, Sciacovelli L, Faggian D, Plebani M. Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics. Clin Chem Lab Med. 2020; 58(7):1081-8.
DOI: https://doi.org/10.1515/cclm-2020-0443.
Abbasi J. The promise and peril of antibody testing for COVID-19. J Am Med Assoc. 2020; 323(19):1881-3.
DOI: https://doi.org/10.1001/jama.2020.6170.
Tasić N, Paixao TR, Gonçalves LM. Biosensing of D-dimer, making the transition from the central hospital laboratory to bedside determination. Talanta. 2020; 207:120270.
DOI: https://doi.org/10.1016/j.talanta.2019.120270.
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8(4):420-2.
DOI: https://doi.org/10.1016/S2213-2600(20)30076-X.
Mao L, Wang M, Chen S, He Q, Chang J, Hong C, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. Med Rxiv. 2020; 25:2020-02.
DOI: https://doi.org/10.1101/2020.02.22.20026500
Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 18(5):1094-9.
DOI: https://doi.org/10.1111/jth.14817
Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020; 506:145-8.
DOI: https://doi.org/10.1016/j.cca.2020.03.022.
Fathi N, Rezaei N. Lymphopenia in COVID‐19: Therapeutic opportunities. Cell Biol Int. 2020; 44(9):1792-7.
DOI: https://doi.org/10.1002/cbin.11403.
Saghazadeh A, Rezaei N. Immune-epidemiological parameters of the novel coronavirus–a perspective. Expert Rev Clin Immunol. 2020; 16(5):465-70.
DOI: https://doi.org/10.1080/1744666X.2020.1750954.
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020; 17(5):533-5.
Copyright (c) 2024 Journal of Shifa Tameer-e-Millat University

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Journal of Shifa Tameer-e-Millat University (JSTMU) is the owner of all copyright to any work published in the journal. Any material printed in JSTMU may not be reproduced without the permission of the editors or publisher. The Journal accepts only original material for publication with the understanding that except for abstracts, no part of the data has been published or will be submitted for publication elsewhere before appearing and/or decision in this journal. The Editorial Board makes every effort to ensure the accuracy and authenticity of material printed in the journal. However, conclusions and statements expressed are views of the authors and do not necessarily reflect the opinions of the Editorial Board or JSTMU.

Content of this journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
